Semi-Symmetric Graphs of Valence
نویسنده
چکیده
A graph is semi-symmetric if it is regular and edge transitive but not vertex transitive. The 3and 4-valent semi-symmetric graphs are wellstudied. Several papers describe infinite families of such graphs and their properties. 3-valent semi-symmetric graphs have been completely classified up to 768 vertices. The goal of this project is to extend this work to 5-valent semi-symmetric graphs. In this paper I present work on searching for these graphs, and the construction of such a graph.
منابع مشابه
Classifying pentavalnet symmetric graphs of order $24p$
A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.
متن کاملCubic symmetric graphs of orders $36p$ and $36p^{2}$
A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we classifyall the connected cubic symmetric graphs of order $36p$ and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.
متن کاملA NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS
The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.
متن کاملA census of 4-valent half-arc-transitive graphs and arc- transitive digraphs of valence two
A complete list of all connected arc-transitive asymmetric digraphs of in-valence and out-valence 2 on up to 1000 vertices is presented. As a byproduct, a complete list of all connected 4-valent graphs admitting a 12 -arc-transitive group of automorphisms on up to 1000 vertices is obtained. Several graph-theoretical properties of the elements of our census are calculated and discussed.
متن کاملCOMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012